

Superpave For Airports

Federal Aviation Administration

Northwest Mountain Region Annual Conference

Seattle, Washington • April 8, 2003

John Duval, P.E.

Presentation Overview

- Introduction—Why Superpave?
- Current HMA Airfield Paving Specifications
- Superpave Overview
- Superpave Case Studies at US Airports

Desirable Properties of HMA

"The final goal of mix design is to...achieve a balance among all the desired [mix] properties." (MS-22)

Seven Desirable Properties of HMA

- Stability
- Durability
- Impermeability
- Workability

- Flexibility
- FatigueResistance
- Skid Resistance

Marshall Mix Design Method

- Developed by Bruce Marshall, MissDOT Bituminous Engr
- Adopted by Corps of Engineers--WWII
- Adopted by FAA as Basis of P-401--1950s
- ASTM D 1559

Mix Design in the 1940s

- Impact Hammer
 - 10 lbs
 - 18" Drop
- Compact with 50 or 75 blows per side depending on aircraft weight
 - > 60k lbs = 75
 - < 60k lbs = 50

Airport Paving in the 1940s

Airport Paving in the 21st Century

777-300ER Max Gross Weight: 750,000 lbs Main Gear Tire Pressure: 218 psi

Photo Courtesy Andrew Hunt/Airliner.net—Technical Data Source: Boeing

Beechcraft King Air B-200: Max Wt 12,500 lbs Tire Pressure: 150 psi

Photo Courtesy North Carolina DOT—Data Source: Raytheon

Mix Design in the 21st Century

Ram pressure 600 kPa

The Superpave System

1. Materials Selection

3. Design Binder Content

2. Design Aggregate Structure

4. Moisture Sensitivity

Superpave® 2002

Asphalt Binder Implementation Status

Superpave® 2002

Mix Design Implementation Status

Source: FHWA, 2002

US Superpave Market--Highways

Source: FHWA, 2002

Total U.S. Civilian Airports: 18,345 90% of Runway Surfaces Are Asphalt

Benefits of Superpave

- State-of-the-Art in Mix Design
 - Widely accepted by state highway agencies
- Superpave Gyratory Compactor
 - More representative of compaction in field
- Improved Material Requirements
 - Performance Graded Binders
 - Improved Aggregate Characteristics

HMA Airfield Paving Specifications

Federal Airfield HMA Specs.

- Federal Aviation Administration
 - Item P-401, Plant Mix Bituminous Pavements
 - www.faa.gov/arp
 - P-401(Superpave)
 - Engineering Brief 59
 - State Standards
 - For General Aviation Airfields
- Department of Defense
 - Unified Guide Spec 02749, HMA for Airfields
 - www.hnd.usace.army.mil/techinfo/gspec

Item P-401

- Marshall Method of Mix Design
- Asphalt Institute MS-2

For pavements subjected to aircraft over 12,500 lb

FAA Engineering Brief 59

EB 59, Dec 18, 2001, provides a Superpave guide specification, P-401(SP), for the following airport pavements:

All < 60,000 lbs

Taxiways, Aprons > 60,000 lbs

State Specs Allowed by FAA

Allowed on any Airport with Design Aircraft < 12.5K lbs

Need FAA
Regional Office
Approval for
Airports with
Design Aircraft
12.5K to 60K lbs

DoD Spec 02479 Allowed by FAA

Marshall Mix Design, Agg Specs very Similar to P-401 SP

Used by COE, USAF, and Navy—Need Regional Office Approval for Use by FAA

Superpave Overview

The Superpave System

1. Materials Selection

3. Design Binder Content

2. Design Aggregate Structure

4. Moisture Sensitivity

Superpave PG Binders for Airfields

Asphalt Stiffness Varies w/ Temp

Stiffness (Response to Load)

Penetration and Viscosity

Shortcomings of Old AC Specs

Superpave Asphalt Binder Specification

Grading System Based on Climate

PG 64-28

Performance Grade

Average 7-day max pavement design temp

Min pavement design temp

Superpave PG Binder Tests

Asphalt Binder Grade

Function of climate, load, and pavement application (runway, taxiway, or apron)

FAA Guidelines

Aircraft Gross Weight (lbs)	High Temperature Grade Adjustment(s) for Binders Pavement Type	
	< 12,500	Lemmanii ii nn m
< 60,000		
< 100,000	N/A	1
> 100,000	N/A	2

FAA P-401 Superpave Specification Table A

FAA and DoD General Guidelines

> Consult with local DOT

- Determine PG grades typically used and available
- Determine "Standard Grade" for Specific Location
 - typically used for highways with <10M ESALs
 - sufficient on most GA airports
- Consider "Bumping" from "Standard Grade" (top
 5" only) if concerned with rutting
 - 5" only) if concerned with rutting
 - past performance?
 - tire pressures?
 - standing or slow traffic?

Effect of Load & Loading Rate

- For < 12.5K

PG 64-22

- For < 60K

PG 70-22

- For < 100K T/W & Apron</p>

PG 70-22

- For > 100K T/W & Apron

PG 76-22

Superpave Aggregate Quality

Shearing Behavior of Aggregate

Before Load

After Load

Contrasting Stone Skeletons

Increase Percentage of Crushed Faces
Increase Percentage of Crushed Faces

Cubical Aggregate

Limit Amount of Natural Sand Limit Amount of Natural Sand

Superpave Aggregates

Superpave Aggregates

Material Quality—Coarse Agg

Measurement	P-401	P-401
	Marshall	Superpave
LA Abrasion	≤ 40 %	≤ 40 %
Sodium Sulfate	≤ 10 %	≤ 10 %
Magnesium Sulfate	≤ 13 %	≤ 13 %
Fractured Faces (> 60K)	85/1 70/2	85/1 80/2
Fractured Faces (< 60K)	65/1 50/2	
Flat & Elongated	≤ 8 %	≤ 8 % (5:1)

Specification Requires Improved Aggregate Quality

Material Quality—Fine Agg

Measurement	P-401	P-401
	Marshall	Superpave
Plasticity Index	≤ 6 %	≤ 6 %
Liquid Limit	≤ 25 %	≤ 25 %
Natural Sand	≤ 20 %	≤ 15 %
Sand Equivalent	≥ 40 %	≥ 40 %
Fine Aggregate Angularity	N/A	≥ 45%

Specification Requires Improved Aggregate Quality

The Superpave System

1. Materials Selection

3. Design Binder Content

2. Design Aggregate Structure

4. Moisture Sensitivity

Aggregate Size Definitions

 Nominal Maximum Aggregate Size (NMAS)

one size larger than the first sieve to retain more than 10%

Maximum Aggregate Size

one size larger than nominal maximum size

Superpave Gradation Analysis

Superpave Gradation Analysis

Typical Superpave Gradation

Superpave Aggregate Gradation

19.0 mm

12.5 mm

Coarser Aggregate Gradations

"The region has had a long history of success with coarser gradations that reduce the percentage of fine materials."

--FAA NW Mountain Region Notice 14, January 2002

The Superpave System

1. Materials Selection

3. Design Binder Content

2. Design Aggregate Structure

4. Moisture Sensitivity

Key Components of Gyratory Compactor

Superpave Gyratory Compactor

- Axial and shearing action
- 150 mm dia.molds
 - Aggregate size up to 37.5 mm
 - Height measurement during compaction allows densification to be evaluated

Superpave Gyratory Compactors

SGC Results

Three Points on SGC Curve

Data Presentation

Superpave Mix Design Requirements

Determine mix properties at N_{Design} and compare to criteria

–Air voids

-VMA

-VFA

 $-\%G_{mm}$ at N_{ini}

-%G_{mm}at N_{max}

–Dust proportion

4% (or 96% G_{mm})

See table

See table

<= 89%

<= 98%

0.6 to 1.2

VMA Requirements

Nominal max agg size	Min. VMA
- 9.5 mm	15
– 12.5 mm	14
– 19 mm	13
– 35 mm	12
– 37.5 mm	11

The Superpave System

1. Materials Selection

3. Design Binder Content

2. Design Aggregate Structure

4. Moisture Sensitivity

Moisture Sensitivity (AASHTO T 283)

- Prepare set of 6 specimens
 - 6 to 8% voids
- Determine tensile strength of 3 of specimens
- Condition remaining 3 in water bath (60°C, 24 hr.)
 - Option for freeze cycle
- Bring to test temperature (25°C) and determine wet (conditioned) tensile strength

Moisture Sensitivity

- Measured on proposed aggregate blend and asphalt content
- Reduced compactive effort to increase voids

3 Conditioned Specimens

3 Dry Specimens

Moisture Sensitivity

Determine the tensile strengths of both sets of 3 specimens

Calculate the Tensile Strength Ratio (TSR)

Minimum of 80% needed

Superpave Project Case Histories

First Superpave Mixes on Airfields

- 1998: Little Rock AFB, AR
 - US Air Force
 - Runway Overlay

- 1999: Griffin-Spalding Airport, GA
 - FAA
 - Runway Overlay
 - Airport Manager: "Performance has been outstanding, looking as new as the day it went down."

North Carolina Division of Aviation Superpave Program

- 2001
 - One Project
- 2002
 - Two Projects
- 2003
 - Six ProjectsExpected

- Use State Mixes
 - S 9.5 A (N_{des}=50) for aircraft <12.5K lbs
 - S 9.5 B (N_{des}=75) for aircraft <60K lbs
 - These mixes selected for their impermeability, workability and compatibility.
 - Needed resistance to aging and cracking

Volk Field HMA Runway Reconstruction

- Base 3" Lift, 19mm SP, PG 58-28
 - 20% RAP
- Binder 2" Lift, 12.5mm SP, PG58-28
- Surface 2" Lift, 12.5mm SP, PG 64-28
 - Modified binder for more durability and resistance to deformation
- Tight Smoothness Tolerances
 - Three Lifts vs Two
 - Topcon Leveling Laser Controls Used In Binder And Surface Lifts
- MTD Used For All Lifts

Volk Field Superpave 19.0 mm Nom Max (PG 58-28)

Paving Surface Lift on Volk Field RW

Volk Field Runway, Fall 2002

No rutting after 4 summers No cracking after 3 winters

Summary: P-401 vs P-401(SP)

	P-401	P-401(SP)
For Aircraft > 60K lbs	75 Blows	N _{des} =100
For Aircraft < 60K lbs	50 Blows	N _{des} =75
Design Air Voids, %	2.8-4.2	4.0
Minimum VMA, %	14 (1" MPS)	13 (19mm)
	15 (3/4"MPS)	14 (12.5mm)
Gradation	Dense Fine	Superpave

Superpave Resources

SP-1 Binder Specification

SP-2 Mix Design

FAA/Al Airport Asphalt Pavement 3-day Workshops

- > Rotate and Partner Among FAA Divisions
 - Kansas City, MO Apr 14-17, 03
 - Burlington, MA July 22-25, 03
 - Newport Beach, CA Nov 4-6, 03
- Airfield Specific Instruction on Thickness Design, Materials, Specifications, Construction and Maintenance
- > For Airport Agencies, Consultants, Contractors,Testing Firms
- > Averaged 70 Attendees on Last 4 Workshops

Summary

- Superpave is here to stay
- FAA EB 59 provides guidance on the use of Superpave at airports in the US
 - Superpave PG Binder Selection
 - Superpave Mix Design
- Several Superpave airfield projects have been completed in the US
- The tools are in place for you to succeed on your next Superpave project

Extra Slides

Airfields are Different than Highways

Airfield Pavements Challenges

- FOD Concerns (for Jets)
- Loading Conditions
 - Gross weights
 - Tire pressures
- Lack of Kneading from Traffic

FOD is a Life-Safety Issue

During the summer of 1996, an F-16 crashed 1.5 miles short of the Pensacola RW while being diverted from Langley AFB due to an expected Hurricane hitting the coast of Virginia. The crash killed a Mother and her small child inside their home. The accident investigation traced the cause of the engine malfunction to a piece of concrete which was ingested back at the Langley airfield.

Photo Courtesy Maarten Visser—Technical Data Source: Boeing

Airbus A320 Max Gross Weight: 162,000 lbs Main Gear Tire Pressure: 200 psi

777-300ER Max Gross Weight: 750,000 lbs Main Gear Tire Pressure: 218 psi

Photo Courtesy Andrew Hunt/Airliner.net—Technical Data Source: Boeing

Fechnical Data Source: Boeing Photo Courtesy

Bombardier Q400: Max Wt 64,500 lbs

Photo/Data Source: Bombardier

Hawker Horizon: Max Wt 37,500 lbs

Beechcraft King Air B-200: Max Wt 12,500 lbs Tire Pressure: 150 psi

Photo Courtesy North Carolina DOT—Data Source: Raytheon

C-17 Max Gross Weight: 585,000 lbs Main Gear Tire Pressure: 138 psi

Corps of Engineers Guidelines

Aircraft Tire Pressure (psi) Rui	High Temperature Grade Adjustment(s) for Binders	
	Pavement Type	
	Runways, Taxiways and Parking Aprons	
Less than 100	0	
100 - 200	0-1	
Greater than 200	1-2	

Unified Facilities Guide Specification Section 02749 HMA for Airfields

More General Guidelines

- PGs above a -22 on the low end (e.g. PG 64-16) are not recommended
 - May have greater tendency to age prematurely in desert climate and crack
 - Lack of kneading action
- PG's above a 76 on high end (e.g. 82-22) are not recommended
 - Stiff and difficult to work/ compact
- **≻**Consult with local DOT